A metatranscriptome study targeting the protistan community was conducted off the coast of Southern California, at the San Pedro Ocean Time‐series station at the surface, 150 m (oxycline), and 890 m to link putative metabolic patterns to distinct …
The marine eukaryotic alga *Heterosigma akashiwo* (Raphidophyceae) is known for forming ichthyotoxic harmful algal blooms (HABs). In the past 50 years, *H. akashiwo* blooms have increased, occurring globally in highly eutrophic coastal and estuarine …
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological …
Establishing virus–host relationships has historically relied on culture-dependent approaches. Here we report on the use of marine metatranscriptomics to probe virus–host relationships. Statistical co-occurrence analyses of dsDNA, ssRNA and dsRNA …
Marine eukaryotic phytoplankton adapt to low phosphorus (P) in the oceans through a variety of step‐wise mechanisms including lipid substitution and decreased nucleic acid content. Here, we examined the impact of low P concentrations on intracellular …
A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in …
Diverse communities of marine phytoplankton carry out half of global primary production. The vast diversity of the phytoplankton has long perplexed ecologists because these organisms coexist in an isotropic environment while competing for the same …
One of the most dramatic large-scale features in the ocean is the seasonal greening of the North Atlantic in spring and summer due to the accumulation of phytoplankton biomass in the surface layer. In 1953, Harald Ulrik Sverdrup hypothesized a now …
Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays. …